Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Journal
Document Type
Year range
1.
Gene ; 851: 146981, 2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2076125

ABSTRACT

Andrographolide and related compounds are effective against several viral diseases, including dengue, COVID-19, influenza, and chikungunya. Andrographis paniculata is the primary source for these compounds, but its availability is limited. A. alata is a potential alternative source, and neoandrographolide (NAG) is the major antiviral compound in this species. Since molecular studies in A. alata are scarce, we sequenced its leaf transcriptome to identify the full-length genes involved in neoandrographolide biosynthesis. We assembled 13.6 Gb RNA-Seq data and generated 81,361 transcripts with 1007 bp average length and 1,810 bp N50. The transcripts were categorized under biological processes (2,707), cellular components (678), and molecular functions (2,036). KEGG analysis mapped 975 transcripts to the secondary metabolite pathways. Among the 420 transcripts mapped to terpenoids and polyketides pathways, 142 transcripts were related to the biosynthesis of andrographolide and its derivatives. After a detailed analysis of these transcripts, we identified 32 full-length genes coding for all the 22 enzymes needed for andrographolide biosynthesis. Among them, 15 full-length genes were identified for the first time from Andrographis species. These full-length genes and the transcripts shall serve as an invaluable resource for the metabolic engineering of andrographolides and neoandrographolide in Andrographis and other species.


Subject(s)
Andrographis , COVID-19 , Diterpenes , Andrographis/genetics , Andrographis/metabolism , Antiviral Agents/metabolism , Diterpenes/metabolism , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL